Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We discuss the results of the spectroscopic and photometric monitoring of the type IIn supernova (SN) 2023ldh. Survey archive data show that the SN progenitor experienced erratic variability in the years before exploding. Beginning May 2023, the source showed a general slow luminosity rise that lasted for over four months, with some superposed luminosity fluctuations. In analogy toSN 2009ip, we call this brightening ‘Event A’. During Event A,SN 2023ldhreached a maximum absolute magnitude ofMr = −15.52 ± 0.24 mag. The light curves then decreased by about 1 mag in all filters for about two weeks reaching a relative minimum, which was followed by a steep brightening (Event B) to an absolute peak magnitude ofMr = −18.53 ± 0.23 mag, replicating the evolution ofSN 2009ipand similar to that of type IIn SNe. The three spectra ofSN 2023ldhobtained during Event A show multi-component P Cygni profiles of H I and Fe II lines. During the rise to the Event B peak, the spectrum shows a blue continuum dominated by Balmer lines in emission with Lorentzian profiles, with a full width at half maximum velocity of about 650 km s−1. Later, in the post-peak phase, the spectrum reddens, and broader wings appear in the Hαline profile. Metal lines with P Cygni profiles and velocities of about 2000 km s−1are clearly visible. Beginning around three months past maximum and until very late phases, the Ca II lines become among the most prominent features, while Hαis dominated by an intermediate-width component with a boxy profile. AlthoughSN 2023ldhmimics the evolution of otherSN 2009ip-like transients, it is slightly more luminous and has a slower photometric evolution. The surprisingly homogeneous observational properties ofSN 2009ip-like events may indicate similar explosion scenarios and similar progenitor parameters.more » « lessFree, publicly-accessible full text available September 1, 2026
-
We present the photometric and spectroscopic analysis of five Type Ibn supernovae (SNe): SN 2020nxt, SN 2020taz, SN 2021bbv, SN 2023utc, and SN 2024aej. These events share key observational features and belong to a family of objects similar to the prototypical Type Ibn SN 2006jc. The SNe exhibit rise times of approximately 10 days and peak absolute magnitudes ranging from −16.5 to −19 mag. Notably, SN 2023utc is the faintest Type Ibn SN discovered to date, with an exceptionally lowr-band absolute magnitude of −16.4 mag. The pseudo-bolometric light curves peak at (1 − 10)×1042erg s−1, with total radiated energies on the order of (1 − 10)×1048erg. Spectroscopically, these SNe display a relatively slow spectral evolution. The early spectra are characterised by a hot blue continuum and prominent He Iemission lines. The early spectra also show blackbody temperatures exceeding 10 000 K, with a subsequent decline in temperature during later phases. Narrow He Ilines, which are indicative of unshocked circumstellar material (CSM), show velocities of approximately 1000 km s−1. The spectra suggest that the progenitors of these SNe underwent significant mass loss prior to the explosion, resulting in a He-rich CSM. Our light curve modelling yielded estimates for the ejecta mass (Mej) in the range 1 − 3 M⊙with kinetic energies (EKin) of (0.1 − 1)×1050erg. The inferred CSM mass ranges from 0.2 to 1 M⊙. These findings are consistent with expectations for core collapse events arising from relatively massive envelope-stripped progenitors.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Aims.We investigate the photometric characteristics of a sample of intermediate-luminosity red transients (ILRTs), a class of elusive objects with peak luminosity between that of classical novae and standard supernovae. Our goal is to provide a stepping stone in the path to reveal the physical origin of such events, thanks to the analysis of the datasets collected. Methods.We present the multi-wavelength photometric follow-up of four ILRTs, namely NGC 300 2008OT-1, AT 2019abn, AT 2019ahd, and AT 2019udc. Through the analysis and modelling of their spectral energy distribution and bolometric light curves, we inferred the physical parameters associated with these transients. Results.All four objects display a single-peaked light curve which ends in a linear decline in magnitudes at late phases. A flux excess with respect to a single blackbody emission is detected in the infrared domain for three objects in our sample, a few months after maximum. This feature, commonly found in ILRTs, is interpreted as a sign of dust formation. Mid-infrared monitoring of NGC 300 2008OT-1 761 days after maximum allowed us to infer the presence of ∼10−3–10−5M⊙of dust, depending on the chemical composition and the grain size adopted. The late-time decline of the bolometric light curves of the considered ILRTs is shallower than expected for56Ni decay, hence requiring an additional powering mechanism. James Webb Space Telescope observations of AT 2019abn prove that the object has faded below its progenitor luminosity in the mid-infrared domain, five years after its peak. Together with the disappearance of NGC 300 2008OT-1 in Spitzer images seven years after its discovery, this supports the terminal explosion scenario for ILRTs. With a simple semi-analytical model we tried to reproduce the observed bolometric light curves in the context of a few solar masses ejected at few 103km s−1and enshrouded in an optically thick circumstellar medium.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Aims.We investigate the spectroscopic characteristics of intermediate-luminosity Red Transients (ILRTs), a class of elusive objects with peak luminosity between that of classical novae and standard supernovae. Our goal is to provide a stepping stone in the path to unveiling the physical origin of these events based on the analysis of the collected datasets. Methods.We present the extensive optical and near-infrared (NIR) spectroscopic monitoring of four ILRTs, namely NGC 300 2008OT-1, AT 2019abn, AT 2019ahd and AT 2019udc. First we focus on the evolution of the most prominent spectral features observed in the low-resolution spectra. We then present a more detailed description of the high-resolution spectrum collected for NGC 300 2008OT-1 with the Very Large Telescope equipped with UVES. Finally, we describe our analysis of late-time spectra of NGC 300 2008OT-1 and AT 2019ahd through comparisons with both synthetic and observed spectra. Results.Balmer and Ca lines dominate the optical spectra, revealing the presence of slowly moving circumstellar medium (CSM) around the objects. The line luminosity of Hα, Hβ, and Ca IINIR triplet presents a double peaked evolution with time, possibly indicative of interaction between fast ejecta and the slow CSM. The high-resolution spectrum of NGC 300 2008OT-1 reveals a complex circumstellar environment, with the transient being surrounded by a slow (∼30 km s−1) progenitor wind. At late epochs, optical spectra of NGC 300 2008OT-1 and AT 2019ahd show broad (∼2500 km s−1) emission features at ∼6170 Å and ∼7000 Å which are unprecedented for ILRTs. We find that these lines originate most likely from the blending of several narrow lines, possibly of iron-peak elements.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract Quasi-periodic eruptions (QPEs) are luminous bursts of soft X-rays from the nuclei of galaxies, repeating on timescales of hours to weeks1–5. The mechanism behind these rare systems is uncertain, but most theories involve accretion disks around supermassive black holes (SMBHs) undergoing instabilities6–8or interacting with a stellar object in a close orbit9–11. It has been suggested that this disk could be created when the SMBH disrupts a passing star8,11, implying that many QPEs should be preceded by observable tidal disruption events (TDEs). Two known QPE sources show long-term decays in quiescent luminosity consistent with TDEs4,12and two observed TDEs have exhibited X-ray flares consistent with individual eruptions13,14. TDEs and QPEs also occur preferentially in similar galaxies15. However, no confirmed repeating QPEs have been associated with a spectroscopically confirmed TDE or an optical TDE observed at peak brightness. Here we report the detection of nine X-ray QPEs with a mean recurrence time of approximately 48 h from AT2019qiz, a nearby and extensively studied optically selected TDE16. We detect and model the X-ray, ultraviolet (UV) and optical emission from the accretion disk and show that an orbiting body colliding with this disk provides a plausible explanation for the QPEs.more » « less
-
Abstract We present extensive optical photometry of the afterglow of GRB 221009A. Our data cover 0.9–59.9 days from the time of Swift and Fermi gamma-ray burst (GRB) detections. Photometry in rizy -band filters was collected primarily with Pan-STARRS and supplemented by multiple 1–4 m imaging facilities. We analyzed the Swift X-ray data of the afterglow and found a single decline rate power law f ( t ) ∝ t −1.556±0.002 best describes the light curve. In addition to the high foreground Milky Way dust extinction along this line of sight, the data favor additional extinction to consistently model the optical to X-ray flux with optically thin synchrotron emission. We fit the X-ray-derived power law to the optical light curve and find good agreement with the measured data up to 5−6 days. Thereafter we find a flux excess in the riy bands that peaks in the observer frame at ∼20 days. This excess shares similar light-curve profiles to the Type Ic broad-lined supernovae SN 2016jca and SN 2017iuk once corrected for the GRB redshift of z = 0.151 and arbitrarily scaled. This may be representative of an SN emerging from the declining afterglow. We measure rest-frame absolute peak AB magnitudes of M g = −19.8 ± 0.6 and M r = − 19.4 ± 0.3 and M z = −20.1 ± 0.3. If this is an SN component, then Bayesian modeling of the excess flux would imply explosion parameters of M ej = 7.1 − 1.7 + 2.4 M ⊙ , M Ni = 1.0 − 0.4 + 0.6 M ⊙ , and v ej = 33,900 − 5700 + 5900 km s −1 , for the ejecta mass, nickel mass, and ejecta velocity respectively, inferring an explosion energy of E kin ≃ 2.6–9.0 × 10 52 erg.more » « less
-
Abstract We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (flash) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi, Hei/ii, Civ, and Niii/iv/vwith a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,Mu= −18.6 mag,Mg= −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGENand the radiation-hydrodynamics codeHERACLESsuggests dense, solar-metallicity CSM confined tor= (0.5–1) × 1015cm, and a progenitor mass-loss rate of yr−1. For the assumed progenitor wind velocity ofvw= 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwindphase) during the last ∼3–6 yr before explosion.more » « less
-
Abstract We present multiwavelength photometry and spectroscopy of SN 2022jli, an unprecedented Type Ic supernova discovered in the galaxy NGC 157 at a distance of ≈ 23 Mpc. The multiband light curves reveal many remarkable characteristics. Peaking at a magnitude ofg= 15.11 ± 0.02, the high-cadence photometry reveals periodic undulations of 12.5 ± 0.2 days superimposed on the 200-day supernova decline. This periodicity is observed in the light curves from nine separate filter and instrument configurations with peak-to-peak amplitudes of ≃ 0.1 mag. This is the first time that repeated periodic oscillations, over many cycles, have been detected in a supernova light curve. SN 2022jli also displays an extreme early excess that fades over ≈25 days, followed by a rise to a peak luminosity ofLopt= 1042.1erg s−1. Although the exact explosion epoch is not constrained by data, the time from explosion to maximum light is ≳ 59 days. The luminosity can be explained by a large ejecta mass (Mej≈ 12 ± 6M⊙) powered by56Ni, but we find it difficult to quantitatively model the early excess with circumstellar interaction and cooling. Collision between the supernova ejecta and a binary companion is a possible source of this emission. We discuss the origin of the periodic variability in the light curve, including interaction of the SN ejecta with nested shells of circumstellar matter and neutron stars colliding with binary companions.more » « less
-
Abstract We present the discovery and extensive follow-up of a remarkable fast-evolving optical transient, AT 2022aedm, detected by the Asteroid Terrestrial impact Last Alert Survey (ATLAS). In the ATLASoband, AT 2022aedm exhibited a rise time of 9 ± 1 days, reaching a luminous peak withMg≈ −22 mag. It faded by 2 mag in thegband during the next 15 days. These timescales are consistent with other rapidly evolving transients, though the luminosity is extreme. Most surprisingly, the host galaxy is a massive elliptical with negligible current star formation. Radio and X-ray observations rule out a relativistic AT 2018cow–like explosion. A spectrum in the first few days after explosion showed short-lived Heiiemission resembling young core-collapse supernovae, but obvious broad supernova features never developed; later spectra showed only a fast-cooling continuum and narrow, blueshifted absorption lines, possibly arising in a wind withv≈ 2700 km s−1. We identify two further transients in the literature (Dougie in particular, as well as AT 2020bot) that share similarities in their luminosities, timescales, color evolution, and largely featureless spectra and propose that these may constitute a new class of transients: luminous fast coolers. All three events occurred in passive galaxies at offsets of ∼4–10 kpc from the nucleus, posing a challenge for progenitor models involving massive stars or black holes. The light curves and spectra appear to be consistent with shock breakout emission, though this mechanism is usually associated with core-collapse supernovae. The encounter of a star with a stellar-mass black hole may provide a promising alternative explanation.more » « less
An official website of the United States government
